Go;gle“ User-level threads...

... with threads.
Paul Turner <pjt@google.com>



Google
Threading Models

e 1:1 (Kernel Threading)
User contexts correspond directly with their own kernel schedulable
entity. Everything does this (e.g. Linux, Windows, Solaris, NetBSD,
FreeBSD).

e N:1 (User Threading)
User-level threading multiplexed onto a single kernel context. No
kernel awareness of user-level threading structure.

e M:N (Hybrid)
Kernel assisted N:1 threading, using M kernel contexts. Classic
example is Scheduler Activations



Google
Parallel programming models
e Synchronous (Thread/Request)

e Delegate Event (Asynchronous callbacks)
e Message passing / Event Loops



Google
Callback Types

e Asynchronous callbacks do not block their caller. They are
typically run either within a separate thread, or after their invoker’s
completion. e.g.:

Executor ()->Add (Callback (...))

e Synchronous callbacks are always completed (often within the

same thread) before control is returned to the caller. e.g.:
foo->Lookup (&context, arg, &result)



Google

Complexity: “Own” vs “View”

int x;

(1) Foo (&x) ;
vs
(2) Executor()->Add (Callback (Foo, &x));

In (2), the reader must immediately be concerned with:
e Synchronization of access to x.

e Co-ordination of x’s lifetime.

e \What happens after Foo completes?




Google
Callbacks are not a Programming Model
e Threads are base unit of concurrency... but

e Requests are the typical “currency” servers must build parallelism
around.



Google

Programming Models: Thread per request

Advantages
e Simple programming model
e (Good data-locality

Challenges
e Harder to realize parallelism within a request
e Latency predictability varies inversely with load
o 1000 outstanding requests means 1000 threads.
Do you know where your threads are?



Google

Programming Models: Asynchronous Worker Objects

Advantages
e Greater control of work partitioning, improved latency predictability.
e Lower overheads achievable.

Challenges

e Complex programming model; control and data-flow now require
encapsulation. No longer strictly linear. Additional resource
boundaries introduced. Code written under this model depends
more heavily on primitives such as Conditions.

e Loss of data locality.



Google

Crux

crux, n: something that torments by its puzzling nature; a
perplexing difficulty.

We ‘fixed’ thread-per-request by introducing concurrency
objects that are smaller than a request.

... yet many of thread-per-requests issues caused by
concurrency!

... communication still cumbersome.



Google
CSP: Go’s take

Go provides constructs allowing for a more synchronous
model; allowing control flow to be represented in a linear
fashion, while realizing available concurrency.

Key features:
e (Goroutines
e Channels
e Select statement

What makes this type of model hard to achieve in C++?

Where does this hybrid face challenges? Are they
barriers to adoption within C++?



Google

How much does a context switch cost?

~# for ((1=0;1<10;i++)) do time
/pipe test 500000; done

real Om2.911s

real Om3.052s

real Om5.282s
real Om4d.724s
real Om6.780s

real Oml.250s

Why the inconsistency?



Google

How about a raw futex?

e sys futex() allows a program to wait for an address to change, or
signal anyone waiting on a given address.

®
Benchmark Time (ns) CPU(ns) Iterations
BM Futex 4705 3555 1000000
BM Futex 2757 1917 1000000
BM Futex 2931 1983 1000000
BM Futex 2791 1935 1000000
BM Futex 2932 1933 1000000

e A little faster, ~2.7 usec/switch typical.



Google

Wake-up CPU interactions

b.

<t1 wakes t2>

<t1 sleeps>

<idle>

<t1 wakes t2>

“"_;_> <idle>
<t2 resumes>

W <t2 re-wakes t1>

<t3 resumes>

<idle>

. <enqueue t2>

<t2 resumes>

Google Confidential and Proprietary



Google

So what's the true cost?

ibsyl:~# taskset -c 0 time
/pipe test 500000

real Oml.326s
user Om0O.0b55s
SYys Om0.635s

1 million context switches
~1.326 usec per switch

Can we do better?




Google

Futex (pinned)

Benchmark Time (ns)

BM Futex
BM Futex
BM Futex
BM Futex
BM Futex

CPU (ns)

Iterations
1022 1000000
1024 1000000
1016 1000000
1016 1000000
1006 1000000

Down to ~1 usec, getting better.. but little else we

can do.




Google

Context-switch cost: key observations

e The switch into kernel mode (ring0) is surprisingly inexpensive
o <50ns round trip.

e Majority of the context-switching cost attributable to the complexity
of the scheduling decision by a modern SMP cpu scheduler.



Google
Syscall API

pid t switchto wait (timespec *timeout)
e Enter an 'unscheduled state’, until our control is re-initiated by
another thread or external event (signal).

void switchto resume (pid t tid)
e Resume regular execution of tid

pid t switchto switch(pid t tid)
e Synchronously transfer control to target sibling thread, leaving the
current thread unscheduled.

e Analogous to:
o Atomically { Resume(t1); Wait(NULL); }



Google

Kernel View

CPU i:

Thread A

Thread B ><

Minimal scheduling operation.
e B inherits A’s virtual runtime.

e B was not runnable, so we don’t need to remove it from runqueues.
e B holds references on same objects as A.

(Unscheduled state is TASK INTERRUPTIBLE with a special return
stack.)

Google Confidential and Proprietary



Google

API choices/Considerations

® Qperations must be commutative (reversible).
{T1:Wait, T2:Switch(T1)} should behave the same as {T2:Switch
(T1), T1:Wait}

® Requiring a re-entrant (asynchronous) user-scheduler entry
classically hard; prefer a synchronous programming model.

® User scheduling id compatible with kernel scheduling; the kernel

scheduler grants us quanta, we schedule within that quanta.
e Load-balancing is best left to the load-balancer.



Google

Context-switch performance

Performance (Unpinned)

4000 B Futex

B Mutex
I Switch
3000 B Resume
2000
1000
0
Cost
Benchmark Time (ns) CPU(ns) Iterations
BM Futex 2905 1958 1000000
BM GoogleMutex 3102 2326 1000000
BM SwitchTo 179 178 3917412
BM SwitchResume 27734 1554 1000000

Google Confidential and Proprietary



Google

Advantages of maintaining a 1:1 threading model

e Semantics dependent on thread identity (e.g. TLS, tid, etc) are
preserved.

e Existing debugging and profiling tools work naturally.

e Existing thread management APIs (e.g. nice(2), tkill) continue to
work.

e Compatible with existing code.



Google
Related: Socket locality

e Thread A makes request, sends on socket, waits on response
e Response comes to Thread B, a networking thread

e B needs to wake A
o B would like A to run on the same CPU (locality)



Google

Context-switching lacks context

static void ContextSwitcher (Mutex* m, ...) {
for (; n > 0; n-——) {
a) m->LockWhen (Condition (own mutex(), wval));
b) <mutex owner = next thread>; m->Unlock() ;

}

e \When releasing resource, no way of advertising that our execution
Is about to stop.



Google
Backup

Google Confidential and Proprietary



Google

Managed Concurrency: SwitchToGroups

Context
Blocking Blocking
Delegate 1 Delegate 1




Google

Context
Blocking Blocking
Delegate 1 Delegate 1

Google Confidential and Proprietary




Google

Context
Blocking Blocking
Delegate 1 Delegate 1

Google Confidential and Proprietary




Google

Managed Concurrency

1. t1:uread(2) — t1:k blocks — SwitchTo — tD:k
IF IDLE:

a. tD:u No other threads — WaitForUnblockingOrNew()

b. t1:k read returns, t1:k allowed to unblock instead of fast-wait
c. t1:uread(2) returns

ELSE (suppose runnable t2 exists)

a. tD:u— SwitchTo + BecomeDesignate — t2
b. t2:u resumes working

c. (t1:k read returns, enters a fast-wait state)

Since 12 is running (and we chose to have 1 active thread) we've
explicitly chosen to defer the processing of t1's wake-up; unlike

the 1:1 case, 12's execution proceeds undisturbed, skipping work
of the re-enqueue and preemption.



