
User-level threads…
… with threads.
Paul Turner <pjt@google.com>

Google Confidential and Proprietary

Threading Models

● 1:1 (Kernel Threading)
User contexts correspond directly with their own kernel schedulable
entity. Everything does this (e.g. Linux, Windows, Solaris, NetBSD,
FreeBSD).

● N:1 (User Threading)
User-level threading multiplexed onto a single kernel context. No
kernel awareness of user-level threading structure.

● M:N (Hybrid)
Kernel assisted N:1 threading, using M kernel contexts. Classic
example is Scheduler Activations

Google Confidential and Proprietary

Parallel programming models

● Synchronous (Thread/Request)
● Delegate Event (Asynchronous callbacks)
● Message passing / Event Loops

Google Confidential and Proprietary

Callback Types

● Asynchronous callbacks do not block their caller. They are
typically run either within a separate thread, or after their invoker’s
completion. e.g.:
 Executor()->Add(Callback(...))

● Synchronous callbacks are always completed (often within the
same thread) before control is returned to the caller. e.g.:
 foo->Lookup(&context, arg, &result);

Google Confidential and Proprietary

Complexity: “Own” vs “View”

In (2), the reader must immediately be concerned with:
● Synchronization of access to x.
● Co-ordination of x’s lifetime.
● What happens after Foo completes?

int x;

(1) Foo(&x);
 vs
(2) Executor()->Add(Callback(Foo, &x));

Google Confidential and Proprietary

Callbacks are not a Programming Model

● Threads are base unit of concurrency... but
● Requests are the typical “currency” servers must build parallelism

around.

Google Confidential and Proprietary

Programming Models: Thread per request

Advantages
● Simple programming model
● Good data-locality

Challenges
● Harder to realize parallelism within a request
● Latency predictability varies inversely with load

○ 1000 outstanding requests means 1000 threads.
Do you know where your threads are?

Google Confidential and Proprietary

Programming Models: Asynchronous Worker Objects

Advantages
● Greater control of work partitioning, improved latency predictability.
● Lower overheads achievable.

Challenges
● Complex programming model; control and data-flow now require

encapsulation. No longer strictly linear. Additional resource
boundaries introduced. Code written under this model depends
more heavily on primitives such as Conditions.

● Loss of data locality.

Google Confidential and Proprietary

Crux

crux, n: something that torments by its puzzling nature; a
perplexing difficulty.

We ‘fixed’ thread-per-request by introducing concurrency
objects that are smaller than a request.

… yet many of thread-per-requests issues caused by
concurrency!

… communication still cumbersome.

Google Confidential and Proprietary

Go provides constructs allowing for a more synchronous
model; allowing control flow to be represented in a linear
fashion, while realizing available concurrency.

Key features:
● Goroutines
● Channels
● Select statement

What makes this type of model hard to achieve in C++?

Where does this hybrid face challenges? Are they
barriers to adoption within C++?

CSP: Go’s take

Google Confidential and Proprietary

How much does a context switch cost?

Why the inconsistency?

~# for ((i=0;i<10;i++)) do time .
/pipe_test 500000; done
real 0m2.911s
real 0m3.052s
real 0m5.282s
real 0m4.724s
real 0m6.780s
real 0m1.250s
...

Google Confidential and Proprietary

How about a raw futex?

● sys_futex() allows a program to wait for an address to change, or
signal anyone waiting on a given address.

●

● A little faster, ~2.7 usec/switch typical.

Benchmark Time(ns) CPU(ns) Iterations

BM_Futex 4705 3555 1000000
BM_Futex 2757 1917 1000000
BM_Futex 2931 1983 1000000
BM_Futex 2791 1935 1000000
BM_Futex 2932 1933 1000000

Google Confidential and Proprietary

Wake-up CPU interactions

CPU 0 CPU 1

<t1 wakes t2> <idle>

<t1 sleeps> <t2 resumes>

 <idle> <t2 re-wakes t1>
... ...

IPI

IPI

CPU 2

<t1 wakes t2> IPI <enqueue t2>
<t2 resumes>

<t3 resumes>

<idle>a.

b.

c.

d.

e.

Google Confidential and Proprietary

So what's the true cost?

1 million context switches
~1.326 usec per switch

Can we do better?

ibsy1:~# taskset -c 0 time .
/pipe_test 500000

real 0m1.326s
user 0m0.055s
sys 0m0.635s

Your
application.

CPU Scheduler

Google Confidential and Proprietary

Futex (pinned)

Down to ~1 usec, getting better.. but little else we
can do.

Benchmark Time(ns) CPU(ns) Iterations

BM_Futex 1028 1022 1000000
BM_Futex 1030 1024 1000000
BM_Futex 1021 1016 1000000
BM_Futex 1022 1016 1000000
BM_Futex 1012 1006 1000000

Google Confidential and Proprietary

Context-switch cost: key observations

● The switch into kernel mode (ring0) is surprisingly inexpensive
○ <50ns round trip.

● Majority of the context-switching cost attributable to the complexity
of the scheduling decision by a modern SMP cpu scheduler.

Google Confidential and Proprietary

Syscall API

pid_t switchto_wait(timespec *timeout)
● Enter an 'unscheduled state', until our control is re-initiated by

another thread or external event (signal).

void switchto_resume(pid_t tid)
● Resume regular execution of tid

pid_t switchto_switch(pid_t tid)
● Synchronously transfer control to target sibling thread, leaving the

current thread unscheduled.
● Analogous to:

○ Atomically { Resume(t1); Wait(NULL); }

Google Confidential and Proprietary

CPU i:

Minimal scheduling operation.
● B inherits A’s virtual runtime.
● B was not runnable, so we don’t need to remove it from runqueues.
● B holds references on same objects as A.

(Unscheduled state is TASK_INTERRUPTIBLE with a special return
stack.)

Kernel View

Thread A

Thread B

Google Confidential and Proprietary

API choices/Considerations

● Operations must be commutative (reversible).
{T1:Wait, T2:Switch(T1)} should behave the same as {T2:Switch
(T1), T1:Wait}

● Requiring a re-entrant (asynchronous) user-scheduler entry
classically hard; prefer a synchronous programming model.

● User scheduling id compatible with kernel scheduling; the kernel
scheduler grants us quanta, we schedule within that quanta.

● Load-balancing is best left to the load-balancer.

Google Confidential and Proprietary

Context-switch performance

Benchmark Time(ns) CPU(ns) Iterations

BM_Futex 2905 1958 1000000
BM_GoogleMutex 3102 2326 1000000
BM_SwitchTo 179 178 3917412
BM_SwitchResume 2734 1554 1000000

Google Confidential and Proprietary

Advantages of maintaining a 1:1 threading model

● Semantics dependent on thread identity (e.g. TLS, tid, etc) are
preserved.

● Existing debugging and profiling tools work naturally.
● Existing thread management APIs (e.g. nice(2), tkill) continue to

work.
● Compatible with existing code.

Google Confidential and Proprietary

Related: Socket locality

● Thread A makes request, sends on socket, waits on response
● Response comes to Thread B, a networking thread
● B needs to wake A

○ B would like A to run on the same CPU (locality)

Google Confidential and Proprietary

Context-switching lacks context

● When releasing resource, no way of advertising that our execution
is about to stop.

static void ContextSwitcher(Mutex* m, ...) {
 for (; n > 0; n--) {
 a) m->LockWhen(Condition(own_mutex(), val));
 b) <mutex_owner = next thread>; m->Unlock();
 }
}

Google Confidential and Proprietary

Backup

Google Confidential and Proprietary

Managed Concurrency: SwitchToGroups

T1 T2 T3 Tn

Blocking
Delegate 1

Blocking
Delegate 1

Context

Google Confidential and Proprietary

T1 T2 T3 Tn

Blocking
Delegate 1

Blocking
Delegate 1

Context

Google Confidential and Proprietary

T1 T2 T3 Tn

Blocking
Delegate 1

Blocking
Delegate 1

Context

Google Confidential and Proprietary

Managed Concurrency

1. t1:u read(2) → t1:k blocks → SwitchTo → tD:k
IF IDLE:
a. tD:u No other threads → WaitForUnblockingOrNew()
b. t1:k read returns, t1:k allowed to unblock instead of fast-wait
c. t1:u read(2) returns

ELSE (suppose runnable t2 exists)
a. tD:u → SwitchTo + BecomeDesignate → t2
b. t2:u resumes working
c. (t1:k read returns, enters a fast-wait state)

Since t2 is running (and we chose to have 1 active thread) we've
 explicitly chosen to defer the processing of t1's wake-up; unlike
 the 1:1 case, t2's execution proceeds undisturbed, skipping work
 of the re-enqueue and preemption.

