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Threading Models

e 1:1 (Kernel Threading)
User contexts correspond directly with their own kernel schedulable
entity. Everything does this (e.g. Linux, Windows, Solaris, NetBSD,
FreeBSD).

e N:1 (User Threading)
User-level threading multiplexed onto a single kernel context. No
kernel awareness of user-level threading structure.

e M:N (Hybrid)
Kernel assisted N:1 threading, using M kernel contexts. Classic
example is Scheduler Activations
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Parallel programming models
e Synchronous (Thread/Request)

e Delegate Event (Asynchronous callbacks)
e Message passing / Event Loops
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Callback Types

e Asynchronous callbacks do not block their caller. They are
typically run either within a separate thread, or after their invoker’s
completion. e.g.:

Executor ()->Add (Callback (...))

e Synchronous callbacks are always completed (often within the

same thread) before control is returned to the caller. e.g.:
foo->Lookup (&context, arg, &result)
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Complexity: “Own” vs “View”

int x;

(1) Foo (&x) ;
vs
(2) Executor()->Add (Callback (Foo, &x));

In (2), the reader must immediately be concerned with:
e Synchronization of access to x.

e Co-ordination of x’s lifetime.

e \What happens after Foo completes?
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Callbacks are not a Programming Model
e Threads are base unit of concurrency... but

e Requests are the typical “currency” servers must build parallelism
around.
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Programming Models: Thread per request

Advantages
e Simple programming model
e (Good data-locality

Challenges
e Harder to realize parallelism within a request
e Latency predictability varies inversely with load
o 1000 outstanding requests means 1000 threads.
Do you know where your threads are?
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Programming Models: Asynchronous Worker Objects

Advantages
e Greater control of work partitioning, improved latency predictability.
e Lower overheads achievable.

Challenges

e Complex programming model; control and data-flow now require
encapsulation. No longer strictly linear. Additional resource
boundaries introduced. Code written under this model depends
more heavily on primitives such as Conditions.

e Loss of data locality.
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Crux

crux, n: something that torments by its puzzling nature; a
perplexing difficulty.

We ‘fixed’ thread-per-request by introducing concurrency
objects that are smaller than a request.

... yet many of thread-per-requests issues caused by
concurrency!

... communication still cumbersome.
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CSP: Go’s take

Go provides constructs allowing for a more synchronous
model; allowing control flow to be represented in a linear
fashion, while realizing available concurrency.

Key features:
e (Goroutines
e Channels
e Select statement

What makes this type of model hard to achieve in C++?

Where does this hybrid face challenges? Are they
barriers to adoption within C++?
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How much does a context switch cost?

~# for ((1=0;1<10;i++)) do time
/pipe test 500000; done

real Om2.911s

real Om3.052s

real Om5.282s
real Om4d.724s
real Om6.780s

real Oml.250s

Why the inconsistency?
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How about a raw futex?

e sys futex() allows a program to wait for an address to change, or
signal anyone waiting on a given address.

®
Benchmark Time (ns) CPU(ns) Iterations
BM Futex 4705 3555 1000000
BM Futex 2757 1917 1000000
BM Futex 2931 1983 1000000
BM Futex 2791 1935 1000000
BM Futex 2932 1933 1000000

e A little faster, ~2.7 usec/switch typical.
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Wake-up CPU interactions

b.

<t1 wakes t2>

<t1 sleeps>

<idle>

<t1 wakes t2>

“"_;_> <idle>
<t2 resumes>

W <t2 re-wakes t1>

<t3 resumes>

<idle>

. <enqueue t2>

<t2 resumes>
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So what's the true cost?

ibsyl:~# taskset -c 0 time
/pipe test 500000

real Oml.326s
user Om0O.0b55s
SYys Om0.635s

1 million context switches
~1.326 usec per switch

Can we do better?
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Futex (pinned)

Benchmark Time (ns)

BM Futex
BM Futex
BM Futex
BM Futex
BM Futex

CPU (ns)

Iterations
1022 1000000
1024 1000000
1016 1000000
1016 1000000
1006 1000000

Down to ~1 usec, getting better.. but little else we

can do.




Google

Context-switch cost: key observations

e The switch into kernel mode (ring0) is surprisingly inexpensive
o <50ns round trip.

e Majority of the context-switching cost attributable to the complexity
of the scheduling decision by a modern SMP cpu scheduler.
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Syscall API

pid t switchto wait (timespec *timeout)
e Enter an 'unscheduled state’, until our control is re-initiated by
another thread or external event (signal).

void switchto resume (pid t tid)
e Resume regular execution of tid

pid t switchto switch(pid t tid)
e Synchronously transfer control to target sibling thread, leaving the
current thread unscheduled.

e Analogous to:
o Atomically { Resume(t1); Wait(NULL); }



Google

Kernel View

CPU i:

Thread A

Thread B ><

Minimal scheduling operation.
e B inherits A’s virtual runtime.

e B was not runnable, so we don’t need to remove it from runqueues.
e B holds references on same objects as A.

(Unscheduled state is TASK INTERRUPTIBLE with a special return
stack.)
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API choices/Considerations

® Qperations must be commutative (reversible).
{T1:Wait, T2:Switch(T1)} should behave the same as {T2:Switch
(T1), T1:Wait}

® Requiring a re-entrant (asynchronous) user-scheduler entry
classically hard; prefer a synchronous programming model.

® User scheduling id compatible with kernel scheduling; the kernel

scheduler grants us quanta, we schedule within that quanta.
e Load-balancing is best left to the load-balancer.
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Context-switch performance

Performance (Unpinned)

4000 B Futex

B Mutex
I Switch
3000 B Resume
2000
1000
0
Cost
Benchmark Time (ns) CPU(ns) Iterations
BM Futex 2905 1958 1000000
BM GoogleMutex 3102 2326 1000000
BM SwitchTo 179 178 3917412
BM SwitchResume 27734 1554 1000000
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Advantages of maintaining a 1:1 threading model

e Semantics dependent on thread identity (e.g. TLS, tid, etc) are
preserved.

e Existing debugging and profiling tools work naturally.

e Existing thread management APIs (e.g. nice(2), tkill) continue to
work.

e Compatible with existing code.
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Related: Socket locality

e Thread A makes request, sends on socket, waits on response
e Response comes to Thread B, a networking thread

e B needs to wake A
o B would like A to run on the same CPU (locality)
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Context-switching lacks context

static void ContextSwitcher (Mutex* m, ...) {
for (; n > 0; n-——) {
a) m->LockWhen (Condition (own mutex(), wval));
b) <mutex owner = next thread>; m->Unlock() ;

}

e \When releasing resource, no way of advertising that our execution
Is about to stop.
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Backup
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Managed Concurrency: SwitchToGroups

Context
Blocking Blocking
Delegate 1 Delegate 1
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Context
Blocking Blocking
Delegate 1 Delegate 1
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Context
Blocking Blocking
Delegate 1 Delegate 1
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Managed Concurrency

1. t1:uread(2) — t1:k blocks — SwitchTo — tD:k
IF IDLE:

a. tD:u No other threads — WaitForUnblockingOrNew()

b. t1:k read returns, t1:k allowed to unblock instead of fast-wait
c. t1:uread(2) returns

ELSE (suppose runnable t2 exists)

a. tD:u— SwitchTo + BecomeDesignate — t2
b. t2:u resumes working

c. (t1:k read returns, enters a fast-wait state)

Since 12 is running (and we chose to have 1 active thread) we've
explicitly chosen to defer the processing of t1's wake-up; unlike

the 1:1 case, 12's execution proceeds undisturbed, skipping work
of the re-enqueue and preemption.



